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Abstract. A mean-field approach for epidemic processes with high migration is suggested
by analogy with non-equilibrium statistical mechanics. For large systems a limit of the
thermodynamic type is introduced for which both the total size of the system and the total
number of individuals tend to infinity but the population density remains constant. In the
thermodynamic limit the infection rate is proportional to the product of the proportion of
individuals susceptible to infection and the average probability of infection. The limit form
of the average probability of infection is insensitive to the detailed behaviour of the fluctuations
of the number of infectious individuals and may belong to two universality classes: (1) if the
fluctuation of the number of infectives is non-intermittent it increases with the increase of the
partial density of infectives and approaches exponentially the asymptotic value one for large
densities; (2) for intermittent fluctuations obeying a power-law scaling the average probability
of infection also displays a saturation effect for large densities of infectives but the asymptotic
value one is approached according to a power law rather than exponentially. For low densities
of infectives both expressions for the average probability of infection are linear functions of the
proportion of infectives and the infection rate is given by the mass-action law.

1. Introduction

The theory of epidemics is an independent branch of mathematical biology (Bailey 1975,
Anderson 1982, Hadeler 1984, Becker 1989, Murray 1993). Although in the first stages
of development of this field there had been almost no connections between the study
of epidemics and the theoretical methods of statistical physics, the situation has changed
radically during the last ten years. In this last period percolation theory (Bunde and Havlin
1991, Stauffer and Aharony 1992, Isichenko 1992) and the theory of cellular automata
(Grassberger 1983, 1985, Boccara and Cheong 1992, Boccaraet al 1994) have been applied
to the study of propagation of space-dependent epidemics. In the cellular automata epidemic
models, the main emphasis is on the influence of the motion of the individuals, an aspect
which cannot be easily taken into account in classical treatments and is usually neglected.
Only a few papers deal with the classical description of the motion in terms of partial
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differential equations (Murrayet al 1986, Murray 1993) or of stochastic functional equations
(Bartlett 1956, 1966).

The simplest space-independent description of an epidemic process can be given in
terms of the Kermack–McKendrick model (1927, 1932, 1933, 1937, 1939). For a constant
population size, with no births, deaths or migration, and constant probabilities of recovery
and resensibilization the Kermack–McKendrick model is described in terms of the ordinary
differential equations

dS/dt = −φ(S, I, R)+ γR (1)

dI/dt = φ(S, I, R)− αI (2)

dR/dt = αI − γR (3)

whereS, I, R are the proportions of susceptible, infectious and recovered individuals within
the population(S + I + R = 1), α is the rate of recovery of an infected individual,γ is
the rate of resensibilization of an immune individual recovered from the sickness and the
term φ(S, I, R) is the rate of infection. In the classical Kermack–McKendrick model the
infection rate is assumed to have a bilinear form of the mass-action-law type

φ(S, I, R) = constant× IS. (4)

The name mass-action law has been borrowed from chemical kinetics, a field in which
rate laws of the type (4) have been used for the description of time evolution of certain
chemical reactions for 130 years (Seinfeldet al 1989). In the biological literature it has been
suggested that the validity range of the mass-action law (4) is limited to low population
densities and that for large population densities the functionφ(S, I, R) should display a
saturation effect (Capasso and Serio 1978).

Recent studies of cellular automata epidemic models (Boccara and Cheong 1992,
Boccaraet al 1994, Scḧonfisch 1993, 1995) have shown that a description in terms of
ordinary differential equations of the type (1)–(3) is also possible for space-dependent
processes provided that the migration process is sufficiently fast. In the corresponding
differential equations the infection rateφ(S, I, R) is generally strongly nonlinear and
different from the mass-action-law form and displays a saturation effect similar to the one
suggested by Capasso and Serio (1978). These studies show that the saturation effect of the
infection rateφ(S, I, R) is due to the local nature of the interaction between healthy and
infectious individuals which is limited to the immediate neighbourhoods of the susceptible
individuals.

The purpose of the present paper is to point out some analogies between the statistical
mechanics of irreversible processes (Kuboet al 1985, Grandy 1988) and the theory of
space-dependent epidemics and to use them for the theoretical evaluation of the infection
rate φ(S, I, R). Our approach stems from recent studies by one of the present authors
(Scḧonfisch 1993, 1995) concerning the description of the cellular automata epidemic
models by ordinary differential equations. Schönfisch (1993, 1995) has shown that for
high migration the infection rate can be expressed as

φ(S, I, R) = νSψ(I) (5)

whereν is a characteristic frequency andψ(I) is the probability that a susceptible individual
is infected by the infective individuals from his or her immediate neighbourhood. In the
following we aim to generalize this model for a continuous distribution of individuals
in space. Rigorously speaking this is a very complicated many-body problem because the
infection rate depends on the number and the space distribution of the infectives surrounding
a healthy individual; on the other hand, this distribution is determined by the infection
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rate. This feedback coupling leads to a complicated nonlinear evolution equation for a
set of many-body probability densities describing the stochastic properties of the number
and positions of the different individuals. Such an equation is similar to the nonlinear
evolution equations used in plasma physics (Grandy 1988) or in astrophysics (Saslaw 1985).
Work on the self-consistent treatment of such a many-body stochastic epidemic equation
is in progress and the main results will be presented elsewhere (Vladet al 1996b). The
treatment presented in this paper is much simpler. Our aim is to investigate whether the
above-mentioned feedback coupling is important or not in the limit of very large systems.
The conclusion of our analysis is that for very large systems the expression of the infection
rate is insensitive with respect to the details of the random distribution of the infectives. It
is possible to identify two types of universal asymptotic behaviour which depend only on
the total average number of infective individuals and not on the superior moments.

The outline of the paper is as follows. In sections 2 and 3 we give a general formulation
of the problem and derive a relationship for the probability of infectionψ(I) in terms of the
characteristic function of the probability distribution of the number of infectives. Sections 4
and 5 deal with the two universal laws which emerge in the limit of large systems for non-
intermittent and intermittent fluctuations, respectively. Finally in sections 6 and 7 some
open problems and possibilities for generalizing our approach are pointed out.

2. Formulation of the problem

We consider a large population of individuals confined in a large region6 of ds-dimensional
Euclidean space which is simply connected. As mentioned in the introduction, the total
numberM of individuals is constant and made up of the additive contributionsMS , MI and
MR of susceptible, infectious and recovered individuals, respectively:

M = MS +MI +MR. (6)

The corresponding proportions are

S = MS/M I = MI/M R = MR/M. (7)

We assume that the different individuals may be placed in any position within the
domain6 and that all regions of6 are accessible to migration. A strong migration
process takes place within the system with a characteristic time scale which is at least
one order of magnitude smaller than the characteristic time scales for infection, recovery
and resensibilization. The analysis of the many-body stochastic description of the process
(Vlad et al 1996b) shows that under these circumstances in the characteristic time scale
of the epidemic process the individuals are uniformly and randomly distributed within the
domain6. The probability density of the position vector of an individual

P(r) dr with
∫
6

P (r) dr = 1 (8)

is simply given by the random uniform law

P(r) dr = dr/V6 (9)

where

V6 =
∫
6

dr (10)

is the size of the domain6 (length, surface or volume). The emergence of the probability
law (9) has a simple explanation. Even though the progress of the epidemic process leads to
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correlations among the positions of the different individuals, the migration process, which is
much faster, destroys these correlations. We can make an analogy with a chemical reaction
occurring in a dense fluid (Seinfeldet al 1989). Although the chemical reaction eats up the
more energetic molecules, destroying the equilibrium energy distribution, a local equilibrium
energy distribution is restored and preserved by the non-reactive collisions, which in a dense
fluid are usually more frequent than the reaction events themselves. For an epidemic process
the migration of the individuals is similar to the non-reactive collisions; it plays the role of
a thermostat restoring and maintaining the uniform random distribution (9) which is similar
to the local equilibrium energy distribution.

Concerning the infection process, we assume that it has a local character. An infective
placed at a relative positionr from a healthy individual susceptible to receive the illness is
characterized by a probabilityp(r) of transmitting the infection. The infection process is
limited to a relatively small neighbourhoodD of a healthy individual. We have

p(r)

{
6= 0 for r ∈ D
= 0 for r 6∈ D.

(11)

The epidemic process is assumed to be translationally invariant and isotropic and thus the
probability of infectionp(r) is a function of the absolute valuer = |r| of the relative
position vectorr rather than ofr itself:

p(r) = p(r). (12)

We denote by

B(MI ; t) with
M∑
0

B(MI ; t) = 1 (13)

the probability of the number of the infectives enclosed in the large domain6 at time t .
The evaluation of this probability is a tough problem. For large systems Vladet al (1996b)
have reduced the determination ofB(MI ; t) to the solving of a Schrödinger equation in
imaginary time, which by means of an eikonal (WKB-like) approximation can be reduced
to a partial differential equation of the Hamilton–Jacobi type. In this paper we do not
assume a concrete form for this probability. The only assumption made is that we have a
summary knowledge of the nature of the fluctuations of the number of infectives for large
systems. We define the characteristic function of the probabilityB(MI ; t) as a discrete
Fourier transform

G(b) =
∑

exp(ibMI )B(MI ; t) (14)

whereb is the Fourier variable conjugate toMI . The cumulants〈〈Mm
I 〉〉, m = 1, 2, . . . are

given by a Taylor expansion of the characteristic function

lnG(b) =
∞∑
m=1

(ib)m

m!
〈〈Mm

I 〉〉 (15)

that is

〈〈Mm
I 〉〉 = (−i)m∂m lnG(0)/∂bm m = 1, 2, . . . . (16)

In terms of these cumulants we introduce the relative fluctuations of different orders

cm = 〈〈Mm
I 〉〉/〈〈MI 〉〉m m = 2, 3, . . . . (17)

If for large values of the average number of infectives〈〈MI 〉〉 = 〈MI 〉, cm tend to zero

cm → 0 as〈MI 〉 → ∞ (18)
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then the fluctuations have a non-intermittent behaviour. Otherwise, if as〈MI 〉 → ∞ the
relative fluctuations of different orders do not decrease to zero but tend towards constant
values or diverge to infinity, then the fluctuations are intermittent. In this paper we consider
both these two cases without making any particular assumptions concerning the shapes of
B(MI ; t), G(b) or the values of the cumulants.

Since we are mainly interested in large systems made up of very large numbers
of individuals, we consider a limit similar to the thermodynamic limit from statistical
mechanics, i.e. that both the sizeV6 of the domain6 and the total number of individuals
M tend to infinity but the total population densityρ = M/V remains constant

V6,M → ∞ with ρ = M/V6 constant. (19)

In the following we shall be searching for possible asymptotic universal scaling laws for
the probability of infectionψ(I) in the thermodynamic limit (19) corresponding to non-
intermittent and intermittent fluctuations, respectively.

3. Evaluation of the probability of infection

We introduce the instantaneous probability of infectionξ(MI ; r1, . . . , rMI
) of a healthy

individual by a given numberMI of infectives placed at positions given by the relative
displacement vectorsr1, . . . , rMI

, respectively. We assume translational invariance and
thusξ is independent of the absolute position of the susceptible individual considered. We
can derive the equation

ξ(MI ; r1, . . . , rMI
) = 1 −

MI∏
l=1

[1 − p(rl)] (20)

which expresses the fact that at least one of theMI infectives is enough for triggering the
infection process. TheMI individuals have the probabilities 1− p(rl) of not spreading the
infection and thus the probability that none of them trigger the infection is

∏
(1 − p(rl));

the complementary probability 1− ∏
(1 − p(rl)) equalsξ(MI ; r1, . . . , rMI

).
The probability of infectionψ(I) can be expressed as an average ofξ(MI ; r1, . . . , rMI

)

over the coordinatesr1, . . . , rMI
and over the total number of infectivesMI :

ψ(I) =
M∑

MI=0

B(MI )

∫
6

· · ·
∫
6

P (r1) dr1 . . . P (rMI
) drMI

ξ(MI ; r1, . . . , rMI
). (21)

Expressing the probabilityξ(MI , r1, . . . , rMI
) by means of equation (20), using the

normalization conditions ofB(MI ) andP(r) and taking into account that the individual
probability of infection p(r) vanishes outside the neighbourhoodD we can express
the probability of infectionψ(I) in terms of the characteristic functionG(b) given by
equation (14)

ψ(I) = 1 −
M∑

MI=0

B(MI )

[
1 −

∫
D

p(r)P (r) dr

]MI

= 1 −G

(
b = −i ln

[
1 −

∫
D

p(r)P (r) dr

])
(22)

from which, by using the expression (9) forP(r) we come to

ψ(I) = 1 −G[b = −i ln(1 − V ∗/V6)] (23)



4900 M O Vlad and B Sch¨onfisch

where

V ∗ =
∫
D

p(r) dr 6
∫
D

dr = VD (24)

is an effective ‘epidemic’ volume of the neighbourhoodD which is at most equal to the
corresponding geometrical volumeVD. V ∗ expresses the local character of the infection
process; in the definition (24) ofV ∗ different contributions are ascribed to the different
regions of the neighbourhood: the bigger the probability of contagionp(r) the bigger the
contribution toV ∗. Note that the local character of the infection process is conserved
even in the thermodynamic limit (19). Indeed, according to equation (24) the effective
epidemic volumeV ∗ depends only on the probabilityp(r) and on the size and shape of the
neighbourhoodD but it is independent of the total volumeV6 of the system.

Equation (23) is general; it is valid for any probability distributionP(MI ) of the number
of infected individuals and for any domain6, small or large. In the following two sections
we shall apply it in the thermodynamic limit (19) for non-intermittent and intermittent
fluctuations, respectively.

4. Universal behaviour for non-intermittent fluctuations

By combining equations (15) and (17) and taking into account that

〈〈MI 〉〉 = 〈MI 〉 = 〈I 〉M = 〈I 〉ρV6 (25)

where〈I 〉 is the average proportion of infectives we can express the characteristic function
G(b) in the following form,

G(b) = exp

{ ∞∑
m=1

(ib)m

m!
cm(ρV6〈I 〉)m

}
(26)

and thus expression (22) for the probability of infectionψ(I) becomes

ψ(I) = 1 − exp

{ ∞∑
m=1

cm

m!
ρm〈I 〉m[V6 ln(1 − V ∗/V6)]m

}
(27)

wherec1 = 1 andcm, m = 2, 3, . . ., are given by equation (17). Here and in the following
we deal only with the average value〈I 〉 of the proportion of the infectives, and thus, we
use the simplified notationI for 〈I 〉.

By assuming that the fluctuations of the number of infectives are non-intermittent in
the thermodynamic limit (equation (18)) in equation (27) forV6 → ∞ the contributions
of all cumulants with the exception of the first one tend to zero and the expression of the
probability of infectionψ(I) becomes

ψ(I) ∼ 1 − exp(−IρV ∗) asV6 → ∞. (28)

This is the sought-for universal scaling law for non-intermittent fluctuations. Although
not stated explicitly, a similar scaling law is implicitly included in a system of difference
equations analogous to the SIR model (1)–(3) derived by Boccara and Cheong (1992) in the
case of an infinite range interaction epidemic cellular automaton. There are, however, two
main differences between their equation and our universal scaling law (28): the Boccara
and Cheong’s equation is derived for a particular model whereas equation (28) holds in the
thermodynamic limit for any system with high migration and non-intermittent fluctuations;
besides, their proportionality coefficient in the exponent is different from ours.
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5. Universal behaviour for intermittent fluctuations

We start out with the particular case of marginal intermittent fluctuations for which all
relative fluctuationscm tend towards finite values different from zero in the thermodynamic
limit:

cm → finite 6= 0 for MI → ∞. (29)

In this case equation (27) leads to

ψ(I) = 1 − exp

{ ∞∑
m=1

(−1)mcm
m!

(ρV ∗)mIm
}
. (30)

This is, however, a non-generic situation which is hardly encountered in the real world.
An expansion such as the series in the exponent of equation (30) is usually divergent and
thus the relationship (30) is useless; such divergences can be, however, removed through
resummation by applying a suitable renormalization procedure.

A possible choice is the use of a stochastic version of the Shlesinger–Hughes (1981)
renormalization technique which has been recently suggested by one of the present authors
(Vlad 1994) in the context of random point processes. We consider that a probability
distribution B̃(MI ) displaying an intermittent behaviour can be generated starting from a
non-intermittent probability distributionB(MI ) through a succession of random decimation
processes. Following Vlad (1994), this succession of decimation processes is characterized
by two constant probabilities: the probabilityλ that a decimation process takes place and
the probabilityβ that during a step an infectious individual is decimated. The decimation
does not represent the actual removal of an individual from the system but merely a way
of extracting the essential information about the population fluctuations.

For describing the decimation process we introduce the probabilityB(q)(MI ) of the
number of infectives afterq decimation steps and the probability

χq = (1 − λ)λq (31)

that there areq decimation steps. The final renormalized probabilityB̃(MI ) resulting after
the application of a random number of decimation steps described by the probability law
(31) is

B̃(MI ) =
∑

χqB
(q)(MI ). (32)

As the decimation processes are assumed to act in a random way and each infectious
individual has the same probabilityβ of being removed, the conditional probability
B(q)(MIq |MI(q−1)) that at theqth step the number of remaining individuals isMIq , provided
that at the(q − 1)th step this number wasMI(q−1), is given by a binomial

B(q)(MIq |MI(q−1)) = MI(q−1)!

MIq !(MI(q−1) −MIq)!
(β)MI(q−1)−MIq (1 − β)MIq . (33)

We have

B(q)(MIq) =
∑
MI(q−1)

B(q)(MIq |MI(q−1))B
(q−1)(MI(q−1)) (34)

with

B(0)(MI0) = B(MI0) (35)

whereB(MI ) is the initial probability distribution. No specific assumptions concerning
B(MI ) are made; the only assumption is that the relative fluctuations corresponding to
B(MI ) tend to zero in the thermodynamic limit.
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Now we introduce the characteristic functions of the probabilitiesB(q)(MI ) attached to
the different decimation steps

G(q)(b) =
∑
MI

exp(iMIb)B
(q)(MI ) (36)

and the characteristic function of the renormalized probabilityB̃(MI ):

G̃(b) =
∑
MI

exp(iMIb)B̃(MI ) =
∞∑
q=0

χqG
(q)(b). (37)

After some standard but lengthy computations from equations (31)–(37) we get the following
expressions forG(q)(b) andG̃(b),

G(q)(b) = G[−i ln[1 − (1 − exp(ib))(1 − β)q ]] (38)

G̃(b) = (1 − λ)

∞∑
q=0

λqG[−i ln[1 − (1 − exp(ib))(1 − β)q ]] (39)

where the characteristic function of the initial non-intermittent probabilityB(MI ) is given
by equation (14). Equation (39) can be written in the self-similar form

G̃(b) = (1 − λ)G(b)+ λG̃[−i ln[1 − (1 − exp(ib))(1 − β)]] . (40)

Equation (40) has a structure typical for a renormalization group (RG) equation; its form
suggests the existence of a power-law scaling in 1−exp(ib) for b → 0. Indeed, by using the
Poisson summation technique (Titchmarsh 1948, Vlad 1994) the renormalized characteristic
function G̃(b) can be expressed as

G̃(b) = 1
2(1 − λ)G(b)+ (1 − exp(ib))−H4(exp(ib), ln(1 − exp(ib))) (41)

where

4(α, c) = 1 − λ

− ln(1 − β)

{ ∫ 1

α

(1 − x)H−1G(−i ln x) dx + 2
∞∑
l=1

[
cos

(
2πlc

− ln(1 − β)

)
×

∫ 1

α

(1 − x)H−1G(−i ln x) cos

(
2πl ln(1 − x)

− ln(1 − β)

)
dx + sin

(
2πlc

− ln(1 − β)

)
×

∫ 1

α

(1 − x)H−1G(−i ln x) sin

(
2πl ln(1 − x)

− ln(1 − β)

)
dx

]}
(42)

where

H = ln λ/ ln(1 − β) (43)

is a positive fractal exponent. In equation (42) and in the following we assume that the
Fourier variable is imaginary

b = ig with g = |b| > 0 (44)

and thus the integrals overx are in fact real rather than complex. The scaling law (41)
displays logarithmic oscillations in ln(1−exp(ib)) which are due to the discrete nature of the
decimation process. To avoid the complications generated by these logarithmic oscillations
we consider the limit

λ ↗ 1, β ↘ 0 with H = ln λ/ ln(1 − β) = constant. (45)

This type of limit has been recently introduced in the context of stochastic renormalization
(Vlad 1993); although it leads to the vanishing of the logarithmic oscillations, the scaling
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behaviour characterized by the fractal exponentH is still present. In the limit (45) the RG
equation (40) becomes an ordinary differential equation

−i[1 − exp(ib)] exp(−ib)∂G̃(b)/∂b = H [G̃(b)−G(b)] with G̃(0) = 1 (46)

where the initial condition results from the normalization condition ofB(MI ),∑
B(MI ) = 1. By integrating equation (46) we come to

G̃(b) = H [1 − exp(ib)]−H
∫ 1

exp(ib)
(1 − x)H−1G(−i ln x) dx. (47)

We introduce the factorial moments

Fm =
∑
MI

MI (MI − 1) . . . (MI −m+ 1)B(MI ) (48)

F̃m =
∑
MI

MI (MI − 1) . . . (MI −m+ 1)B̃(MI ) (49)

of the number of infectious individuals described by the initial and renormalized probabilities
B(MI ) and B̃(MI ), respectively. From the definitions (14) and (37) of the characteristic
functionsG(b) andG̃(b) we obtain

Fm = ∂mG(b = 0)/∂[exp(ib)]m (50a)

F̃m = ∂mG̃(b = 0)/∂[exp(ib)]m. (50b)

From equation (50a) it follows that the initial characteristic functionG(b) can be expressed
in a Taylor series of the form

G(b) = 1 +
∞∑
m=1

Fm

m!
[exp(ib)− 1]m. (51)

By inserting equation (51) into equation (47), evaluating the integral overx and
differentiating the resulting equationsm times with respect tob we get the following relations
between the renormalized and non-renormalized factorial moments:

F̃m = FmH/(H +m). (52)

The hyperbolic dependence onm of the coefficient ofFm leads to intermittency. Indeed,
by using the relations between the factorial moments and cumulants (Van Kampen 1992)
we obtain

〈〈M̃I 〉〉 = H

H + 1
〈〈MI 〉〉 (53)

〈〈M̃2
I 〉〉 = c2(H + 1)2 + 1

H(H + 2)
〈〈M̃I 〉〉2 + 〈〈M̃I 〉〉

H + 2
etc. (54)

From equations (53) and (54) it follows that the renormalized relative fluctuation of order
two

c̃2 = 〈〈M̃2
I 〉〉/〈〈M̃I 〉〉2 = c2(H + 1)2 + 1

H(H + 2)
+ 1

〈〈M̃I 〉〉(H + 2)
(55)

does not decrease to zero in the thermodynamic limit but tends towards a positive value

c̃2 → [H(H + 2)]−1 as〈〈M̃I 〉〉 → ∞,M → ∞ (56)

which shows that the population fluctuations are intermittent.
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For evaluating the behaviour of the probability of infectionψ(I) in the thermodynamic
limit we should express the renormalized characteristic functionG̃(b) in terms of the non-
renormalized relative fluctuationscm given by equation (17). By using the integration
variable

z = (1 − x)/[1 − exp(ib)] (57)

and making use of equations (15), (17) and (53), equation (47) becomes

G̃(b) = H

∫ 1

0
zH−1 dz G[−i ln[1 − z(1 − exp(ib))]] (58)

where

G(b) = exp

{ ∞∑
m=1

(ib)m

m!
cm[ρ(1 + 1/H)V6I ]m

}
. (59)

By inserting equations (58) and (59) into the general expression (23), whereG(b) is replaced
by the corresponding renormalized functionG̃(b), we obtain the following relationship for
the infection probabilityψ(I):

ψ(I) = 1 −H

∫ 1

0
zH−1 exp

{ ∞∑
m=1

cm

m!
[ρ(1 + 1/H)]mIm[V6 ln(1 − zV ∗/V6)]m

}
dz. (60)

In the thermodynamic limit allcm-dependent terms with the exception of the first one vanish,
resulting in the sought-for universal law for intermittent fluctuations

ψ(I) = 1 −
∫ 1

0
HzH−1 exp{−ρ(1 + 1/H)V ∗Iz} dz

= 1 −H [ρ(1 + 1/H)V ∗I ]−Hγ [H, ρ(1 + 1/H)V ∗I ] (61)

where

γ (a, x) =
∫ x

0
ta−1 exp(−t) dt a > 0, x > 0 (62)

is the incomplete gamma function.

6. Discussion

The relationship between the two universal laws is simple: the expression (28) for non-
intermittent fluctuations is a particular case of equation (61) corresponding to the limit
H → ∞. Indeed, by using the properties of the incomplete gamma function it is easy to
show that

ψ(I) = 1 −H [ρ(1 + 1/H)V ∗I ]−Hγ [H, ρ(1 + 1/H)V ∗I ] → 1 − exp(−IρV ∗)
asH → ∞. (63)

As the fractal exponentH becomes larger and larger, in the thermodynamic limit the
intermittent character of fluctuations becomes smaller and smaller, and in the limitH → ∞
it vanishes completely; in this limit the renormalized functions become identical to the
non-renormalized ones.

For low total population densities, both functionsψ(I) increase linearly with the fraction
of infectives

ψ(I) → kI asρ → 0 (64)
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where

k = ρV ∗. (65)

In the other extreme of large total population densities,ρ → ∞, both functionsψ(I) tend
to unity

ψ(I) → 1 asρ → ∞ (66)

but the rate of approach to the limit value 1 is different. For non-intermittent fluctuations
the difference between the asymptotic value 1 and the current value of the probability of
infectionψ(I) decreases exponentially with the total population density

1 − ψ(I) = exp(−ρV ∗I ) (67)

whereas for intermittent fluctuations the decrease of the same difference is much slower,
being given by an inverse power law

1 − ψ(I) ∼ 0(H + 1)[ρ(1 + 1/H)V ∗I ]−H asρ → ∞, 0(H + 1) = γ (H + 1,∞).

(68)

The conclusion of this analysis is that the intermittency of fluctuations decreases the
efficiency of the saturation effect due to the local nature of the infection process. It is
easy to check that to reach the same value of the infection probabilityψ(I) close to unity
for intermittent fluctuations the total population density should be bigger than for non-
intermittent fluctuations due to the fact that the exponential (67) decreases faster than the
inverse power law (68). The intensity of this effect increases with the decrease of the value
of the fractal exponentH . The reciprocal value of the exponentH

F = 1/H (69)

is a measure of the degree of intermittency of population fluctuations; for values ofH close
to zero the intermittency is very strong, whereas forH → ∞ we recover the non-intermittent
behaviour.

Concerning the validity range of the limit expressions (28) and (61) for the probability
of infection ψ(I), we expect that the scaling law (28) for non-intermittent fluctuations is
valid in the thermodynamic limit for any values of the total population densityρ and of the
proportion of infectivesI . In contrast, the intermittent scaling law (61), being based on a
renormalization approach is strictly valid only for those regions where a power-law scaling
occurs, that is, for low and for large population densities (equations (64), (65) and (68)).
The expression (61) for intermediate values ofρ andI depending on the incomplete gamma
function, although mathematically properly defined, is only an extrapolation law between
low and high population densities without a deep physical significance.

Our approach does not specify under what circumstances the population fluctuations are
non-intermittent or intermittent. An answer to this question can be given only by using a
many-body approach (Vladet al 1996b). For illustration, in appendix A and appendix B
we have checked the character of fluctuations for a number of probability distributions. The
class of non-intermittent probability distributions includes the Poissonian and the positive
binomial laws,

B(MI ) = (MI !)
−1〈MI 〉MI exp(−〈MI 〉) (70)

B(MI ) = M!

MI !(M −MI)!
εMI (1 − ε)M−MI (71)

where ε is the probability of occurrence of an infective and the other symbols have the
same significance as before.
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In the many-body approach (Vladet al 1996b) the probabilityB(MI ) is evaluated by
making use of the Kubo extensivity ansatz (Kuboet al 1973, Kitahara 1975, Vlad and Ross
1994)

B(MI ) ∼ constant× exp(MJ (I )) (72)

where

J (I ) ∼ O(M0) (73)

is an epidemic action similar to the action function from classical analytical mechanics
depending on the proportionI of the infectives but which is independent of the total
population sizeM. In appendix B we show that the fluctuations corresponding to
equation (72) are also non-intermittent (see also Vladet al 1994).

An intermittent probability law investigated in appendix A is the negative binomial

B(MI ) = 0(H +MI)

0(H)MI !

〈MI 〉MIHH

(H + 〈MI 〉)MI+H (74)

where

0(x) =
∫ ∞

0
tx−1 exp(−t) dt x > 0 (75)

is the complete gamma function andH is a positive fractal exponent similar to the one
entering equation (61). The negative binomial law (74) has a long and distinguished
history in the empirical description of the statistics of infectious diseases as well as of other
contamination phenomena for which the probability of a further event increases whenever
an event has occurred, for instance, for fire and sickness insurance (Bliss and Fisher 1953,
Boswell and Patil 1970 and references therein, Beardet al 1977). Recently the negative
binomial has been applied for describing a similar kind of contagion phenomenon in particle
and nuclear physics for the study of multiplicity distributions in hadronic interactions and
nuclear fragmentation cascades (Giovannini and Van Hove 1986, Van Hove 1987, Cugnon
1987, Carruthers and Shih 1987, Suzuki and Biyajima 1988, Chaudhuri 1992). A further
recent application is the study of galaxy clustering in the large scale structure of the universe
(Carruthers 1991).

For a negative binomial in the thermodynamic limit the relative fluctuationscm tend
towards the positive values

cm → H−(m−1)(m− 1)!$(m)m 6= 0 for finiteH, 〈MI 〉 → ∞ (76)

where

$(l)m =
l∑

k=0

(−1)l−kkm

k!(l − k)!
(77)

are the Stirling numbers of the second kind. From equation (76) we note that the
intermittency is present for any finite value of the fractal exponentH . The non-intermittent
behaviour emerges forH → ∞, a situation in which the negative binomial (74) tends
towards the Poissonian law (70).

In appendix C we show that for a negative binomial distribution of the number of
infectives the probability of infectionψ(I) is given by

ψ(I) = 1 − [H/(H + ρV ∗I )]H . (78)

Equation (78) is valid for any values of the total volumeV6 of the system, whether small or
large. As expected, for small or large values of the total population densityρ the probability
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of infectionψ(I) given by equation (78) has the same scaling behaviour as the universal
scaling law (61) for intermittent fluctuations:

ψ(I) → ρV ∗I asρ → 0 (79)

ψ(I) → 1 −HH/(ρV ∗I )H asρ → ∞ (80)

(compare with equations (64) and (68)). The behaviour for intermediate population densities
is different for the two equations (61) and (78). This fact is consistent with the above-
mentioned observation that the intermittent scaling law (61) is universal only asρ → 0 or
ρ → ∞.

The results presented in this paper may have some further biological as well as physical
implications. We note first that the present analysis is consistent with the many-body
approach (Vladet al 1996b) only for non-intermittent fluctuations. In the present stage of
development of the many-body theory the consistency with the intermittent scaling behaviour
for ψ(I) found here (equation (61)) cannot be tested because the many-body approach
is based on the Kubo extensivity ansatz (72) which is valid only for non-intermittent
fluctuations. The statistical description of the empirical epidemic data in terms of the
negative binomial (74) suggests, however, that in some cases the intermittent behaviour
may occur in the spreading of an infectious disease. For a detailed description of the
intermittent behaviour in terms of the many-body theory a renormalized approach of the
stochastic evolution equations for the grand canonical number-position probability densities
should be developed. At the present stage of research the finalization of such a project is
rather uncertain.

The mean field approach suggested here can be easily extended to include the correlated
behaviour for the population of infectives. The main steps of such an approach for the non-
intermittent case are presented in appendix D. For translationally invariant systems the
expression for the infection probabilityψ(I) has the following form,

ψ(I) = 1 − exp{−ρV ∗I + M[g]} (81)

where M[g] is a linear functional depending on the correlation functionsg =
(gm(r1, . . . , rm)) of different ordersm = 2, 3, . . . of the positions of infectives in clusters
of different sizesm = 2, 3, . . . ,M[g] is given by a series expansion similar to the
virial expansion in equilibrium statistical mechanics. For intermittent fluctuations the
functional M[g] diverges. Further research should lead to the development of a suitable
renormalization technique for the resummation ofM[g].

Concerning the possible physical applications of our approach, we mention only two.
There is a formal analogy between the mechanism of contamination suggested in this paper
and the Klafter–Shlesinger (1986) generalization of the Förster model of non-exponential
relaxation (F̈orster 1949, Klafter and Shlesinger 1986, Vlad and Mackey 1995a). The main
idea is to search for different types of universal scaling behaviour for non-exponential
relaxation in the thermodynamic limit by using the method presented in this paper. Such
an approach will be presented elsewhere (Vladet al 1996c, Vladet al 1996a). A second
possible application is related to the study of the cage effect in liquid state chemical kinetics
(Seinfeldet al 1989) based on an analogy between the neighbourhoodD of a susceptible
individual and the cage of solvent.

7. Conclusions

In this paper a mean field approach in continuous space and time has been suggested for
the description of the saturation effect generated by the short-range, local character of the
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infection processes in the spreading of an epidemic in a population with high migration. The
method is based on the use of a continuous analogue of the neighbourhood of a susceptible
in cellular automata epidemic models. In the thermodynamic limit two universal scaling
laws have been identified, corresponding to non-intermittent and intermittent fluctuations,
respectively. For low population densities both expressions lead to the mass-action law.
For high densities the infection probabilities tend towards unity with different rates in the
two cases: exponentially for non-intermittent fluctuations and according to an inverse power
law for intermittent fluctuations.
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Appendix A

For a Poissonian distribution of the number of infectives all cumulants are equal to the mean
value (Van Kampen 1992). This can be checked by computing the characteristic function

G(b) = exp[〈MI 〉(exp(ib)− 1)] (A.1)

from which, by applying equation (6) we come to

〈〈Mm
I 〉〉 = 〈MI 〉 m = 1, 2. . . . . (A.2)

The relative fluctuationscm corresponding to equation (A.2) tend to zero as〈MI 〉 → ∞,

cm = 〈MI 〉−(m−1) → 0 as〈MI 〉 → ∞ (A.3)

and thus for a Poissonian distribution the fluctuations are non-intermittent.
Similarly for the binomial law (71) the characteristic functionG(b) is

G(b) = [ε exp(ib)+ 1 − ε]M = exp{M ln[ε(exp(ib)− 1)+ 1]}

= exp

{
M

∞∑
l=1

(−1)l+1

l
(exp(ib)− 1)lεl

}
. (A.4)

By expressing the terms(exp(ib) − 1)l by means of the binomial formula and expanding
the exponentials exp(ibq), q = 1, 2, . . . , l, in the resulting expressions in Taylor series after
some algebraic manipulations we obtain

G(b) = exp

{
M

∞∑
m=1

(ib)m

m!

m∑
l=1

(−1)l+1εl(l − 1)!$(l)m

}
(A.5)

where $(l)m are the Stirling numbers of second kind defined by equation (77). The cumulants
corresponding to the expansion (A.5) are

〈〈Mm
I 〉〉 = M

m∑
l=1

(−1)l+1εl(l − 1)!$(l)m . (A.6)

In particular, form = 1 we obtain

〈MI 〉 = 〈〈MI 〉〉 = Mε. (A.7)
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By eliminating the total number of individualsM from equations (A.6) and (A.7) and
computing the relative fluctuationscm we obtain

cm = 〈MI 〉−(m−1)

( m∑
l=1

(−1)l+1εl−1(l − 1)!$(l)m

)
→ 0 as〈MI 〉 → ∞ (A.8)

and thus for the positive binomial (71) the fluctuations are also non-intermittent.
For the negative binomial (74) the characteristic functionG(b) can be computed by

inserting equation (74) into the definition (14) and by summing the resulting binomial
series

G(b) = exp{−H ln[1 + (1 − exp(ib))〈MI 〉/H ]}

= exp

{
H

∞∑
l=1

(〈MI 〉/H)l(exp(ib)− 1)l/ l

}
. (A.9)

Now we can apply the same steps as for the case of the positive binomial, that is, to use the
Newton formula for(exp(ib)− 1)l and to expand the exponentials exp(ibq), q = 1, . . . , l,
in the resulting equations in Taylor series. In the end we obtain the following expressions
for the cumulants〈〈Mm

I 〉〉 and for the relative fluctuationscm,

〈〈Mm
I 〉〉 = H

m∑
l=1

(l − 1)!(〈MI 〉/H)l$(l)m (A.10)

cm =
m∑
l=1

(l − 1)!H−(l−1)〈MI 〉−(m−l)$(l)m → H−(m−1)(m− 1)!$(m)m as〈MI 〉 → ∞

(A.11)

and thus for finiteH the fluctuations described by the negative binomial law (74) are
intermittent.

Appendix B

By using the Kubo extensivity ansatz (72) and (73), the expression (14) for the characteristic
functionG(b) becomes

G(b) ∼ constant
∑
MI

exp{M(ibI + J (I ))} asM → ∞. (B.1)

As M → ∞ we evaluate the sum in equation (B.1) by applying the method of steepest
descent. We come to

G(b) ∼ exp{M(ϕ(ib)+ O(M−1))} M → ∞ (B.2)

where

ϕ(ib) = ibη(ib)+ J (η(ib)) (B.3)

and

η(x) = [−∂J /∂I ](−1) (B.4)

with

−∂J (η(x))/∂η(x) = x x = ib (B.5)
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is the inverse function of−∂J (I )/∂I . We assume thatJ (I ) has only one maximum
for I = I ∗, which corresponds to the deterministic proportion of infectives and that its
derivative is a decreasing function for any positive value ofI ,

∂J (I ∗)/∂I = 0 (B.6)

∂2J (I )/∂I 2 < 0. (B.7)

Due to the condition (B.7) according to the theorem of existence of implicit functionsη(x)

exists and is unique.
Without loss of generality we assume that in equations (72) and (B.1) the normalization

constant is chosen so that

J (I ∗) = 0. (B.8)

As ∂J (I ∗)/∂I = 0 (equation (B.6)), it follows thatη(0) = I ∗ and thus from equations (B.3)
and (B.8) we have

ϕ(0) = 0. (B.9)

By expanding in equations (B.2) and (B.3) the functionϕ(ib) in a Taylor series, using
equation (B.9) and comparing the result with equation (15), we obtain

〈〈Mm
I 〉〉 = M∂mϕ(0)/∂xm asM → ∞ (B.10)

and the corresponding relative fluctuationscm are given by

cm ' 〈MI 〉−(m−1)[(∂mϕ(0)/∂xm)/(∂ϕ(0)/∂x)m] → 0 as〈MI 〉 → ∞ (B.11)

and thus the population fluctuations described by the Kubo extensivity ansatz (72) and (73)
are non-intermittent.

Appendix C

For computing the infection probabilityψ(I) in the case of a negative binomial distribution
of the number of infectives, we write equation (A.9) for the characteristic functionG(b) in
the form

G(b) =
(

H

H + 〈MI 〉(1 − exp(ib))

)H
. (C.1)

By expressing in equation (C.1) the average value〈MI 〉 of the number of infectives in
terms of the average proportion of infectives〈I 〉 = I and of the total population densityρ
(see equation (25)) and using the general expression (23) for the infection probabilityψ(I)

we come to equation (78). Equation (78) does not depend on the total volumeV6 of the
domain6 and thus it is valid both for small and large systems.

Appendix D

For a correlated spatial distribution of individuals the stochastic properties of the number
MI and of the positionsr1, . . . rMI

of the infectives can be described in terms of a random
point process (Van Kampen 1992). We introduce the Janossy probability densities

Q0,QMI
(r1, . . . , rMI

) dr1, . . . ,drMI
(D.1)

with the normalization condition

Q0 +
∑
MI>1

1

MI !

∫
6

· · ·
∫
6

QMI
(r1, . . . , rMI

) dr1 . . .drMI
= 1. (D.2)
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QMI
(r1, . . . , rMI

) dr1 . . .drMI
is the probability that there areMI infectives and that their

positions are betweenr1 andr1+dr1, . . ., andrMI
andrMI

+drMI
. In terms of the Janossy

densities we introduce the product densities (Van Kampen 1992):

ηm(r1, . . . , rm) =
∑
s

1

s!

∫
6

· · ·
∫
6

QMI+S(r1, . . . , rm, rm+1, . . . , rm+S) drm+1 . . .drm+S

(D.3)

and the generating functionals

3[W(r′)] = Q0 +
∑
MI

1

MI !

∫
6

· · ·
∫
6

QMI
(r′

1, . . . , r
′
MI
)W(r′

1) . . .W(r
′
MI
) dr′

1 . . .dr′
MI

(D.4)

4[W(r′)] = 1 +
∑
m>1

1

m!

∫
6

· · ·
∫
6

ηm(r
′
1, . . . , r

′
m)W(r

′
1) . . .W(r

′
m) dr′

1 . . .dr′
M (D.5)

whereW(r′) is a suitable test function. It can be shown that (Van Kampen 1992, Vlad and
Mackey 1995b)

3[W(r′)] = 4[W(r′)− 1]. (D.6)

A cumulant expansion of the generating functional4[W(r′)] of the product densities

4[W(r′)] = exp

{ ∑
m>1

1

m!

∫
6

· · ·
∫
6

gm(r
′
1, . . . , r

′
m)W(r

′
1) . . .W(r

′
m) dr′

1 . . .dr′
m

}
(D.7)

provides a definition for the correlation functionsgm(r1, . . . , rm) of the positions of
infectives from a cluster of sizem:

gm(r1, . . . , rm) = δm ln4[W(r′)]
δW(r1) . . . δW(rm)

∣∣∣∣
W(r′)=0

. (D.8)

For a correlated behaviour of the individuals the infection probabilityψ(I) can be
expressed as an average of the instantaneous probabilityξ(MI ; r1, . . . , rMI

) of infection of
a healthy individual by a given number of infectives with given positions

ψ(I) = 〈ξ(M1; r1, . . . , rMI
)〉 (D.9)

where the average is computed in terms of the Janossy densitiesQMI
(r1, . . . , rMI

). By
using the expression (20) forξ(MI ; r1, . . . , rMI

), the normalization condition (D.2) of the
Janossy densities and equations (D.4)–(D.6), we obtain

ψ(I) = 1 −
∑ 1

MI !

∫
6

· · ·
∫
6

QMI
(r′

1, . . . , r
′
MI
)

MI∏
l=1

[1 − p(r′
l )] dr′

1 . . .dr′
MI

= 1 −3[W(r′) = 1 − p(r′)] = 1 −4[W(r′) = −p(r′)]. (D.10)

Now we use the expansion (D.7) of the generating functional4[W(r′)] and take into
account the local character of the infection events (equation (11)); we come to

ψ(I) = 1 − exp

{ ∑
m>1

(−1)m

m!

∫
D

· · ·
∫
D

gm(r1, . . . , rm)p(r1) . . . p(rm) dr1 . . .drm

}
. (D.11)

For a translationally invariant process we have

g1 = 〈MI 〉/V6 = ρ〈I 〉 = ρI independent ofr (D.12)

gm(r1, . . . , rm) = gm(r1 − r∗, . . . , rm − r∗) (D.13)



4912 M O Vlad and B Sch¨onfisch

where r∗ is an arbitrary reference vector. By using equations (D.12) and (D.13), the
expression (D.11) for the infection probabilityψ(I) can be written in the form (81), where
the factor

M[g] =
∑
m>2

(−1)m

m!

∫
D

· · ·
∫
D

gm(r1, . . . , rm)p(r1) . . . p(rm) dr1 . . .drm (D.14)

is given by an expression similar to the virial expansion from equilibrium statistical
mechanics.
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